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Abstract—In federated learning with differential privacy, an
obvious phenomenon of local gradient sparsity emerges in
some training rounds. When training with low privacy budgets,
there is a risk of excessive noise being added to the uploaded
gradients, leading to a significant decrease in the accuracy
of the global model. To tackle the trade-off between privacy
protection and model accuracy with low privacy budgets, we
propose a differential privacy federated aggregation method
based on gradient sparsity (DP-FedAGS), which not only prevents
excessive noise addition by protecting only significant gradients,
but also accelerates global model convergence by dynamically
calculating the weight of the gradient. Experimental results
indicate that DP-FedAGS achieves comparable privacy protection
to DP-FedAvg and cpSGD, while outperforming DP-FedSNLC.
Moreover, our approach respectively attains an approximate
average test accuracy improvement of 2.45%, 4.79%, and 0.29%
over the above three methods, rendering DP-FedAGS a promising
approach for exploring a balance between privacy protection and
model accuracy.

Index Terms—Federated Learning, Differential Privacy, Gra-
dient Sparsity, Aggregation Weights

I. INTRODUCTION

Differential Privacy (DP) [1] is widely employed in Feder-
ated Learning (FL) [2]. By introducing random noise to the
gradient before uploading, DP protects the privacy information
of the client. The definition of DP incorporates the privacy
budget ε (a non-negative real number) as a parameter used to
quantify the level of privacy protection. A smaller ε indicates
a higher degree of desired privacy protection. Satisfying the
definition of ε-DP [3] ensures that the processing of individual
information in the data set is done with a specified level
of privacy protection, thereby mitigating the risk of privacy
disclosure. DP is frequently combined with local gradient
sparsity [4] to reinforce privacy protection. Nonetheless, in the
context of DP-FL, the phenomenon of local gradient sparsity
becomes particularly prominent in some training rounds. When
training with low privacy budgets, gradient sparsity can give
rise to an abundance of noise in the uploaded gradient, leading
to gradient distortion and a decline in the accuracy of the
global model [5]. Therefore, our objective is to explore the
trade-off between privacy protection and model accuracy in
DP-FL. Balancing privacy protection and model accuracy
has long been a formidable challenge in DP-FL [6]. Some
researchers endeavor to tackle this challenge in two ways:

(1) Sparsity and quantization. These methods entail up-
loading gradients from clients that possess limited parameter
information, thereby diminishing the likelihood of detailed
gradient information leakage and subsequently alleviating the
risk of sensitive data exposure. Mao et al. [7] proposed
a communication-efficient FL framework that dynamically
adapts the quantization levels based on local gradient updates.
SDGM [8] integrates sparsification techniques with Gaussian
noise to provide privacy guarantees for the centralized SGD
algorithm. Lyu et al. [9] proposed DP-SIGNSGD, an efficient,
privacy-preserving, and Byzantine-robust compression algo-
rithm rooted in the concept of gradient sparsification. Hu et
al. [10] combined gradient perturbation with random sparsi-
fication and presented the Fed-SPA method, which bolsters
privacy through sparsification. cpSGD [11] adds noise after
gradient quantization, and it is commonly used as a baseline
method in many works. Nonetheless, sparsity and quantization
reduce the accuracy of the gradient, while high-dimensional
vector quantization imposes higher costs, potentially leading
to a decline in the accuracy of the trained global model.

(2) Protecting significant gradients. Significant gradients
usually encompass vital updates of model parameters, and
protecting these gradients can alleviate the influence of noise
addition on model accuracy, guaranteeing that the model sus-
tains a high level of accuracy while ensuring privacy. Recent
research [12] indicates that the majority of gradient values
updated by clients are close to zero. Consequently, in the
context of low privacy budgets, clients should solely safeguard
significant gradients (those far from zero) to mitigate privacy
budget consumption. DP-ADMM [13] utilizes the alternating
direction method of multipliers for iterative convergence but
is restricted to convex functions. DP-FedSNLC [14] evaluates
the significance of gradients by assessing changes in the loss
function and applies noise perturbation to the significant gra-
dients. However, these studies exhibit limitations concerning
the clients, models, and datasets employed in FL to achieve a
balance between privacy protection and model accuracy, which
do not align with the desired trade-off approach. In conclu-
sion, formulating a DP-FL method that prioritizes significant
gradients to precisely capture the trade-off between privacy
protection and model accuracy remains a substantial challenge
in this domain.



Motivated by the above problems, we combine the ideas of
gradient sparsity and protecting significant gradients to pro-
pose DP-FedAGS, which tackles the trade-off between privacy
protection and model accuracy with low privacy budgets. In
general, DP-FedAGS prevents excessive noise addition by only
protecting significant gradients and accelerating global model
convergence by calculating dynamic aggregation weights for
the gradients. The main contributions of this paper are as
follows:

• We prove that introducing Laplace noise into partial
significant gradients successfully satisfies the definition
of ε-DP.

• To mitigate excessive noise addition when training with
low privacy budgets, we introduce a threshold calculation
method to assess and protect significant gradients.

• To accelerate global model convergence, we propose
a dynamic gradient aggregation method to dynamically
calculate gradient weights and aggregate global gradients.

• Experiments on the MNIST, CIFAR-10, and CIFAR-
100 datasets demonstrate that DP-FedAGS effectively
improves the accuracy and availability of the global
model while ensuring privacy protection.

The remainder of this paper is organized as follows. Section
2 describes the system model. Partial gradient Laplace noise
based on ε-DP is proved in Section 3. The design details of
DP-FedAGS are discussed in Section 4. The experiments and
analysis are given in Section 5. At last, conclusions are drawn
in Section 6.

II. SYSTEM MODEL

As shown in Fig. 1, the system model comprises a central
server and K clients. Each client has its local privacy dataset
Dk and collectively train a global model with parameters W
while ensuring its protection with DP. Client k iterates locally
for E times to update its local model Mk and introduces
noise N to the significant gradients. Subsequently, the client
uploads the processed gradient gt(k), local model training loss
Lk(Wt), and local data size nk to the server. The server com-
putes the gradient aggregation weight γt(k) and aggregates the
global gradient gt by considering gt(k) and γt(k). After that,
the server updates the global model parameters Wt+1. These
steps are iterated until the global model converges and attains
the desired performance.

After T training rounds, the noise added to the gradients
will be scaled to N(0, σ2C2I). With low privacy budgets,
it will lead to higher noise level σ. Due to the sparsity of
local gradients in some training rounds, different importance
levels of gradients are treated differently using sparse vector
techniques. In each training round, gradients greater than
threshold λt will be perturbed, while the remaining gradients
retain their original values. The perturbation method for the
gradients and σ are given by

gt(k) =

{
g′t(k) +N(0, σ2C2I) if g′t(k) + α ≥ λt + β

g′t(k) otherwise
,

(1)

Fig. 1. The framework of DP-FedAGS.

σ =
∆S

ε

√
2 ln(

1.25

ζ
), (2)

where gt(k) is the gradient uploaded by the k-th client in
the t-th training round, g′t(k) is the locally clipped gradient,
∆S is global sensitivity and ζ = e−ε is noise level. At the
same time, the weights for aggregating the gradients uploaded
by each client are often fixed on the server side. However,
when the local data of clients are equal and not independently
identically distributed (Non-IID), perturbing partial gradients
and aggregating the global model based on FedAvg [15] will
result in slower convergence of the global model. Therefore,
we modified the aggregation method of the global model to
ensure that the server can quickly and accurately achieve the
predefined global objective, which is given by

gt =

K∑
k=1

γt(k)gt(k), (3)

where γt(k) ∈ [0, 1],
∑

γt(k) = 1 and gt is the global
aggregated gradient in the t-th training round. Since our
method only perturbs partial significant gradients with noise,
which changes the definition conditions of Laplace noise for
DP. Therefore, it is necessary to rigorously prove whether DP-
FedAGS satisfies ε-DP, i.e., to reevaluate its compliance with
the following definition:

Pr[M(D) = O] ≤ eε Pr[M(D′) = O], (4)

where Pr[·] is the probability, M(D) = (x1, ..., xwd, ..., xd)
T ,

M(D′) = (x1 +∆x1, ..., xwd +∆xwd, ..., xd)
T and O is the

output vector.

III. PARTIAL GRADIENT LAPLACE NOISE BASED ON ε-DP

In order to provide more rigorous and better privacy pro-
tection and facilitate the combined use of various DP mech-
anisms, we opt for Laplace noise [16] as the perturbation
source, which satisfies the ε-DP definition. Contrasted with
Gaussian noise [17], Laplace noise delivers more stringent



TABLE I
LIST OF MAIN SYMBOLIC PARAMETERS

Symbol Symbol Meaning
K Number of Clients
σ Noise Standard Deviation
ε Privacy Budget
d Dimensions of Global Model
η Learning Rate
ζ Noise Level
ω Gradient Selection Coefficient
δ Relaxation Term of Noise
nk Local Data Size of Client k
λt Threshold for Perturbing Gradients
gt Global Gradient in t-th Iteration
N Noise
M Global Model
T Training Rounds
E Local Iterations
B Local Batch Size
C Fixed Clipping Threshold
W Global Model Parameters
Dk Local Privacy Dataset
Lt Total Model Training Loss of Clients
∆S Global Sensitivity
γt[k] Aggregation Weight of Client k
α, β Noise for Evaluating Query Results
D,D′ Sibling Datasets
Lk(Wt) Loss Function for Client k

privacy safeguards at the expense of compromising informa-
tion accuracy. However, DP-FedAGS changes the definition
conditions of Laplace noise for DP. This section will start with
the definition of ε-DP and discuss how our method satisfies
Laplace-DP for partial gradients. Our goal is to prove that
adding Laplace noise to partial significant gradients can satisfy
the requirements of the ε-DP definition.

Definition 1. The probability density function of the Laplace
distribution for the random variable x is defined as (5). The
parameter µ is the location of the added noise, while the
variance is given by 2b2.

Lap(x | µ, b) = 1

2b
e−

|x−µ|
b . (5)

Definition 2. The general definition of DP is as follows:
Given a pair of sibling datasets D and D′, for a function
Fmodel:D→ Rd that represents the mapping relationship from
dataset D to a d-dimensional space, it has a sensitivity ∆S.

Definition 3. In order to satisfy the ε-DP definition with
Laplace-distributed noise Laplaced(

∆S
ε ), for any domain

function with input X , it is defined as (6). The scale parameter
of the Laplace distribution is ∆S

ε .

Fmodel(X) + Laplaced(
∆S

ε
). (6)

Assumption 1. Let the input be an arbitrary domain function
of D, which is given by

Fmodel(D) = (x1, x2, ..., xd)
T . (7)

After adding Laplace noise, the resulting output function is

F ′
model(D) = Fmodel(D)+

(Laplace1(
∆S

ε
), Laplace2(

∆S

ε
), ..., Laplaced(

∆S

ε
)),

(8)

where ∆S = maxD,D′ ∥Fmodel(D)− Fmodel(D
′)∥p, p is

typically set to 1, and its specific representation is given by

∆S = max
D,D′

(

d∑
i=1

|∆xi|). (9)

Because the output function F ′
model(D) satisfies the defini-

tion of DP, then we have

Pr [F ′
model(D) = O] ≤ eεPr [F ′

model(D
′) = O] . (10)

Now, we need to prove the validity of (10) in order to
prove that adding Laplace noise to partial significant gradients
satisfies the definition of ε-DP.

Assumption 2. Assuming that we aggregate the global
gradient based on the gradient weights, then we have

Fmodel(D
′) = (x′

1, x
′
2, ..., x

′
d)

T

= (x1 +∆x1, x2 +∆x2, ..., xd +∆xd)
T
,

(11)

according to (11) we can get

∆S = max
D,D′

(

d∑
i=1

∣∣xi − x′
i

∣∣). (12)

We define ω as the gradient selection coefficient, where ω ∈
[0, 1]. As ω → 1, more gradients are selected. Thus, for any
domain function with inputs D and D′, we have

Fmodel(D) = (x1, x2, . . . , xωd, . . . , xd)
T , (13)

Fmodel(D
′) = (x′

1, . . . , x
′
ωd, . . . , x

′
d)

T

= (x1 +∆x1, . . . , xωd +∆xωd, . . . , xd)
T ,

(14)

then, with input D, D′ and ∆S, we can get

∆SN = max
D,D′

(

ωd∑
i=1

| xi − x′
i |)

= max
D,D′

(

ωd∑
i=1

| ∆xi |) ≤ ∆S.

(15)

Assumption 3. Without loss of generality, we assume
that all xi in the input D are equal to 0. In this case,
we have Fmodel(D) = (0, 0, ..., 0)

T
, Fmodel(D

′) =
(∆x1,∆x2, ...,∆xwd, ..., 0)

T . When O = (y1, y2, ..., yd)
T ,

we have

Pr[F ′
model(D) = O] =

ωd∏
i=1

ε

2∆SN
e
− ε

∆SN
|γi|, (16)

Pr[F ′
model(D

′) = O] =

ωd∏
i=1

ε

2∆SN
e

ε
∆SN

|∆xi−yi|, (17)

then we can get

Pr[F ′
model(D) = O]

Pr[F ′
model(D

′) = O]
=

∏ωd
i=1

ε
2∆SN

e
− ε

∆SN
|yi|∏ωd

i=1
ε

2∆SN
e
− ε

∆SN
|∆xi−yi|

= e
ε

∆SN

∑ωd
i=1(|∆xi−yi|−|yi|).

(18)



Now, we need to prove
∑ωd

i=1 (|∆xi − yi| − |yi|) ≤ ∆SN

in order to prove that (10) holds. For each |∆xi − yi| − |yi|,
according to the absolute inequality, we have

ωd∑
i=1

(−|∆xi|) ≤
ωd∑
i=1

(|∆xi − yi| − |yi|) ≤
ωd∑
i=1

(|∆xi|), (19)

and because
ωd∑
i=1

(|∆xi|) ≤ max
D,D′

(

ωd∑
i=1

|∆xi|) = ∆SN ≤ ∆S, (20)

according to (16), (17) and (20), we can get
ωd∑
i=1

(|∆xi − yi| − |yi|) ≤ ∆SN ≤ ∆S. (21)

We can get
∑ωd

i=1 (|∆xi − yi| − |yi|) ≤ ∆SN from
(21), which allows us to prove the validity of (10), i.e.
Pr [F ′

model(D) = O] ≤ eεPr [F ′
model(D

′) = O] holds. There-
fore, we have proven the following theorem.

Theorem 1. Adding Laplace noise to partial significant
gradients satisfies the definition of ε-DP and ensures the
privacy of gradients.

IV. GRADIENT PERTURBATION AND AGGREGATION

A. Gradient Perturbation Mechanism

According to Theorem 1, it can be concluded that adding
Laplace noise to partial significant gradients ensures the pri-
vacy of the gradients. As shown in Fig. 2, for client k, after
computing the local λt, noise is added to the query results that
exceed λt in d queries. We combine DP with Laplace noise,
referred to as (ε, δ)-DP. When δ = 0, random algorithm A
satisfies ε-DP definition. We make the following assumptions:

Assumption 4. In FL, we assume that random algorithmsA1

and A2 satisfy ε1-DP and ε2-DP respectively, for sequentially
executed algorithms A1 and A2, they satisfy (ε1 + ε2)-DP.

Then, with the random algorithm A, S ⊆ Range(A) and
input D, D′, its formal definition is given by

Pr [A(D) ∈ S] ≤ eεPr [A(D′) ∈ S] + δ. (22)

Assumption 5. The precise query result of input x on dataset
D is represented as R(x,D), and N is noise that follows
Laplace distribution. The query result Q with Laplace noise
added to satisfy ε-DP is given by

Q = R(x,D) +N. (23)

Then, let Lap(∆S/ε) denote the Laplace noise N that
satisfies the ε-DP definition, which is defined by

Pr(N) =
ε

2∆S
e−

ε
∆S |N|. (24)

However, the above reasoning only considers the privacy
budget consumed by a single query. According to the com-
position theorem of DP mechanisms satisfying the Laplace
distribution in FL, if multiple queries are executed simulta-
neously, the privacy budget consumed will increase linearly.

Fig. 2. Gradient perturbation of client k.

Without loss of generality, let d denote the dimension of the
FL model, and the update of d parameters by a single client is
equivalent to answering d queries simultaneously. Let x denote
the input parameters of the d queries. The accurate query result
of input x on dataset D is denoted as R(x,D) ∈ Rd, and the
query result with Laplace noise satisfying ε-DP is denoted as
Q(x, ε), which is given by

Q(x, ε) = R(x,D) +N(ε). (25)

To reduce the privacy budget consumption of simultane-
ously executing multiple queries, we introduce the idea of
sparse vectors [18]. Laplace noise is only added when the
queried content is deemed significant; otherwise, no operation
is performed. Specifically, in a certain training round, if d
queries are requested, Laplace noise is added only when
Rd(x,D) + α ≥ λ+ β, then we have

Ad = Rd(x,D) +Nd, (26)

where Ad is the query result after applying Laplace noise
perturbation for query d. λ is the threshold for determining the
importance of the queried content, α and β are additional noise
that evaluate the importance of the query result, following
Laplace noise distributions Lap(q∆S/ε1) and Lap(q∆S/ε2),
respectively. Nd is the noise used to perturb the query result,
following Laplace noise distribution Lap(q∆S/ε3). However,
the premise of using the above gradient perturbation method
is that the total privacy budget satisfies ε = ε1 + ε2 + ε3.
Therefore, we need to prove ε = ε1 + ε2 + ε3.

Assumption 6. When ∀iRi(D) ≥ Ri(D
′), (27) and (28)

exist. Let κ denote the parameter input for the function
fi(D, κ).

fi(D, κ) = Pr[Ri(D) + α < λ+ κ], (27)

gi(D, κ) = Pr[Ri(D) + α ≥ λ+ κ], (28)

then we have

fi(D, κ) = Pr[Ri(D) + α < λ+ κ]

≤ Pr[Ri(D
′) + α < λ+ κ]

= fi(D
′, κ),

(29)



gi(D, κ) = Pr[Ri(D) + α ≥ λ+ κ]

≤ Pr[Ri(D
′) + α+ χ ≥ λ+ κ]

≤ eε1/q Pr[Ri(D
′) + α ≥ λ+ κ]

= eε1/qgi(D
′, κ),

(30)

then we can get

Pr[M(D)]

≤
∫ +∞

−∞
Pr[κ = β]

∏
j∈i

fj(D
′, κ)

∏
j /∈i

eε1/qgj(D
′, κ)dκ

≤ (eε1/q)q Pr[M(D′)] ≤ eε1+ε2 Pr[M(D′)].

(31)

Following the above steps, ε = ε1 + ε2 + ε3 holds.
Assumption 7. When ∀iRi(D) ≤ Ri(D

′), ∀iRi(D) ≥
Ri(D

′) − χ, according to the above steps, we can infer the
following:

fi(D, κ− χ) = Pr[Ri(D) + α < λ+ κ− χ]

≤ Pr[Ri(D
′)− χ+ α < λ+ κ− χ]

= fi(D
′, κ),

(32)

gi(D, κ− χ) = Pr[Ri(D) + α ≥ λ+ κ− χ]

≤ Pr[Ri(D
′) + α ≥ λ+ κ− χ]

≤ eε1/q Pr[Ri(D
′) + α ≥ λ+ κ]

= eε1/qgi(D
′, κ),

(33)

where χ is the change in the variable. As the independent
variable changes from κ to κ − χ, according to the ε-DP
definition, we can get

Pr[M(D)] =

∫ +∞

−∞
Pr[κ = β + χ]

∏
j∈i

fj(D
′, κ− χ)∏

j /∈i

eεi/qgj(D
′, κ− χ)dκ

≤
∫ +∞

−∞
eε2 Pr[κ = β]

∏
j∈i

fj(D
′, κ)

∏
j /∈i

eεi/qgj(D
′, κ)dκ

≤ (eε1/q)qeε2 Pr[M(D′)] = eε1+ε2 Pr[M(D′)].
(34)

Following the above steps, ε = ε1+ε2+ε3 still holds. Based
on Assumption 6 and Assumption 7, i.e., when ∀iRi(D) ≥
Ri(D

′) or ∀iRi(D) ≤ Ri(D
′), we can always get ε = ε1 +

ε2+ε3, therefore ε = ε1+ε2+ε3 holds. In this way, we have
proven the following theorem.

Theorem 2. The total privacy budget satisfies ε = ε1+ε2+
ε3.

Because ε3 can affect the perturbed gradient values returned
to the server, so ε3 ≫ ε1 + ε2. If ε3 is too small, it will
significantly reduce the model accuracy in FL. Conversely,
even if ε1 + ε2 is very small, perturbation will only occur
when selecting valid gradients. To make the perturbation more
accurate, we aim to minimize the variances of α and β. When
ε1 + ε2 is a fixed value, the privacy budget ratio ε1 : ε2 =
3
√
q2 : 1. Meanwhile, the threshold λ is used to determine the

importance of the queried content. We incorporate the idea of

the Top-k [19] method into the selection of λ, setting different
thresholds for different training rounds. In the early training
rounds, when the parameters change dramatically and there
is more gradient information, a larger threshold λ is set to
ensure fast convergence of the model. In the later training
rounds, when the parameters tend to stabilize and there is less
gradient information, a smaller threshold λ is set to reduce the
consumption of the privacy budget. After T training rounds,
the total number of model parameters is |W |. The calculation
of the threshold λt in the t-th training round is given by

λt = min(sort(g′)[

⌈
t|W |
T

⌉
], sort(g′)[

⌈
9|W |
10

⌉
]), (35)

where sort(·) represents the sorting result in ascending order,
and g′ represents the locally clipped gradient.

B. Gradient Aggregation Mechanism

In FL, the most commonly referenced algorithm is FedAvg
[15], in which the server aggregates the weights of the gra-
dients uploaded by clients. These weights are typically fixed
and determined based on the size of local training data. After
T training rounds, the global model objective must satisfy the
following:

min

K∑
k=1

nk

n
Lk(W ), (36)

where Lk(W ) denotes the loss function used to train the local
model of the client k, n =

∑K
k=1 nk is the total data size

over all participating clients, and nk is the local data size
of client k. The impact of local loss on the global objective
depends entirely on the size of the local data. We hope that
the gradient aggregation weights on the server side can reflect
the aggregated global model through the global loss function.
However, the accuracy of the gradients decreases after noise
is applied, especially when partial gradients are perturbed.
The information contained in the gradients uploaded by each
client may be completely inconsistent with the previous values.
Based on the effectiveness of local training, we dynamically
adjust the gradient aggregation weight γ in each training
round. Assuming that the local model training loss function
for the client k in the t-th training round is Lk(Wt

), the total
model training loss for the client k is Lt =

∑K
k=1 Lk(Wt). If

the proportion of Lk(Wt
) to Lt is relatively large, it indicates

that the gradients uploaded by that client do not reflect the
current trend of the model parameters well. Considering the
influence of the local loss contained in the global objective
function, which depends entirely on the size of the local data,
the gradient aggregation weight γt(k) for client k in the t-th
training round is given by

γt(k) =
nkLt + nLk(Wt)

2nLt
, (37)

where
∑K

k=1
nk

n = 1
⋂∑K

k=1
Lk(Wt)

Lt
= 1 always holds, the

gradient aggregation weight |γt| =
∑K

k=1 γt(k) = 1 for each
client in the t-th training round is always true. We adopt



SGD [20] algorithm to calculate gradient and the detailed
training steps are shown in Algorithm 1. The server performs
T training rounds, resulting in an overall complexity of the
DP-FedAGS algorithm of O(ET ). However, considering that
local iterations E ≪ T , the overall complexity of the DP-
FedAGS can be simplified to O(n).

V. PERFORMANCE EVALUATION

A. Experiment Settings

1) FL datasets and parameter settings. Our experiment
consists of 100 clients participating in FL. We train deep
learning models using the MNIST, CIFAR-10, and CIFAR-100
datasets. We set the batch size as 128, Dirichlet distribution
parameter as 1, relaxation parameter δ as 0.001 and privacy
budgets are set to {0.1, 0.2, 0.5}. The fixed clipping threshold
C is set as 1, and 10 devices participate in training each round
of communication. In the training rounds T of MNIST and
CIFAR-10, CIFAR-100 are 200 and 500, respectively, and the
learning rate η is initialized to 0.1 and 0.05, respectively.

2) Baselines. a) DP-FedAvg [21] is a commonly used
baseline method, which introduces the FedAvg algorithm into
DP. b) cpSGD [11] improves the accuracy of training models
by combining gradient quantization and DP. c) DP-FedSNLC
[14] adds noise to significant gradients to improve the accuracy
of training models by evaluating the changes in local loss
function.

3) Evaluation metrics. a) Privacy protection: We use clas-
sic membership inference attack methods (MIA [22], ML-
Leaks [23], and White-box [24]) during the model training
process. Note that lower accuracy of inference attacks in
the experimental results indicates better privacy protection.
b) Global model availability: Higher average accuracy in the
experimental results indicates higher model training accuracy
and better availability. Note that with low privacy budgets,
we should pay particular attention to changes in the average
accuracy of model training.

B. Privacy Protection

The experimental results for attack accuracy are presented
in Table II. cpSGD achieves the lowest attack accuracy across
different privacy budgets and inference attacks, indicating the
strongest privacy protection effect. DP-FedAvg exhibits lower
attack accuracy compared to DP-FedSNLC and DP-FedAGS,
providing privacy protection second only to cpSGD and
superior to DP-FedAGS. DP-FedSNLC demonstrates strong
privacy protection capabilities during the initial stages of
training; however, it experiences slower model updates in later
stages, resulting in less effective defense against inference
attacks compared to DP-FedAGS, particularly under ML-
Leaks and White-box attacks. DP-FedAGS exhibits slightly
higher attack accuracy compared to DP-FedAvg and cpSGD,
but significantly lower than DP-FedSNLC. As DP-FedAGS
only applies noise perturbation to a subset of significant
gradients and adapts the weight of such gradients based on
training rounds, its noise perturbation is lower compared to
DP-FedAvg and cpSGD. Consequently, the defense effect of

Algorithm 1: DP-FedAGS

1 Input: K, Dk, Mk, M , B, E, σ, ∆S, E1, E2, C, η, T
2 Output: Global model M
3 Initialize M , Mk

4 for each training round t ∈ T do
5 for each client k in parallel do
6 Wk ←Mk;
7 gk, Lk, nk ← clientTrain(Wk, Dk, T, t);
8 end
9 L←

∑
Lk, n←

∑
nk

10 γk ← nkL+nLk

2nL
11 g ←

∑
γkgk

12 Wt+1 ←Wt − ηg
13 end
14 function clientTrain(Wk, Dk, T, t)
15 begin
16 n← D
17 for each local epoch i ∈ E do
18 gi ← ∇L(W );
19 W ←W − ηgi;
20 end
21 g ←

∑
gi, L =

∑
∆M(W )i

22 g′ ← g

max(1,
∥g∥2
C )

23 α← Lap(∆S
ε1

), β ← Lap(∆S
ε2

)

24 λt = min(sort(g′)[
⌈
t|W |
T

⌉
], sort(g′)[

⌈
9|W |
10

⌉
])

25 if g′ + α ≥ λ+ β then
26 g ← g′ +N(0, σ2C2I)
27 else
28 g ← g′

29 end
30 return g, L, n
31 end

DP-FedAGS against inference attacks is slightly inferior to
that of DP-FedAvg and cpSGD. Additionally, on the basis of
Table II, we provide a summary of the average attack accuracy
for the three attacks across varying privacy budgets and model
training methods in Table III. Due to the low complexity of
MNIST, there is little difference in the average attack accuracy
among the four methods. However, as the complexity of the
training dataset increases, the attack accuracy of the four
methods significantly improves. With different datasets and
privacy budgets, the average attack accuracy of DP-FedAGS
is slightly higher than that of DP-FedAvg and cpSGD but
much lower than that of DP-FedSNLC. Especially with low
privacy budgets, when training models using complex datasets,
DP-FedAGS outperforms DP-FedSNLC in privacy protection,
and its privacy protection effectiveness is similar to that of
DP-FedAvg and cpSGD.

C. Global Model Availability

We obtained experimental results in Fig. 3 from Table IV,
which show that during MNIST training, when the privacy



TABLE II
EXPERIMENTAL RESULTS OF ATTACK ACCURACY OF DIFFERENT ATTACK MODELS WITH DIFFERENT TRAINING ALGORITHMS

Privacy Method MNIST CIFAR-10 CIFAR-100
Budget (DP-) Basic MIA ML-Leaks White-box Basic MIA ML-Leaks White-box Basic MIA ML-Leaks White-box

0.1

FedAvg 50.01% 50.02% 50.02% 50.86% 51.42% 53.61% 51.45% 53.42% 55.01%
cpSGD 50.01% 50.01% 50.02% 50.73% 51.31% 53.57% 51.24% 53.31% 54.96%

FedSNLC 50.09% 50.21% 50.24% 51.38% 58.84% 62.59% 54.77% 60.26% 65.86%
FedAGS 50.04% 50.09% 50.11% 50.89% 51.80% 54.38% 51.92% 54.18% 55.84%

0.2

FedAvg 50.04% 50.18% 50.35% 53.07% 55.12% 60.47% 55.63% 58.03% 61.76%
cpSGD 50.03% 50.16% 50.23% 52.99% 55.06% 60.42% 55.49% 57.65% 61.64%

FedSNLC 50.15% 50.27% 50.55% 55.56% 60.69% 67.19% 58.46% 65.88% 69.49%
FedAGS 50.09% 50.21% 50.36% 53.58% 55.33% 60.70% 55.84% 58.91% 62.07%

0.5

FedAvg 50.13% 50.39% 50.83% 55.24% 59.32% 65.23% 60.29% 63.22% 68.10%
cpSGD 50.10% 50.36% 50.81% 55.08% 59.25% 65.17% 60.02% 63.07% 67.70%

FedSNLC 50.26% 50.52% 50.91% 58.91% 62.84% 70.36% 64.41% 70.15% 73.63%
FedAGS 50.17% 50.44% 50.86% 55.45% 59.47% 65.60% 60.74% 64.06% 68.34%

TABLE III
EXPERIMENTAL RESULTS OF AVERAGE ATTACK ACCURACY OF DIFFERENT

ATTACK MODELS WITH DIFFERENT TRAINING ALGORITHMS

Privacy
Budget

Method
(DP-)

Dataset
MNIST CIFAR-10 CIFAR-100
Average

Accuracy
Average

Accuracy
Average

Accuracy

0.1

FedAvg 50.02% 51.96% 53.29%
cpSGD 50.01% 51.87% 53.17%

FedSNLC 50.18% 57.60% 60.30%
FedAGS 50.08% 52.36% 53.98%

0.2

FedAvg 50.19% 56.22% 58.47%
cpSGD 50.14% 56.16% 58.26%

FedSNLC 50.32% 61.15% 64.61%
FedAGS 50.22% 56.54% 58.94%

0.5

FedAvg 50.45% 59.93% 63.87%
cpSGD 50.42% 59.83% 63.60%

FedSNLC 50.56% 64.04% 69.40%
FedAGS 50.49% 60.17% 64.38%

TABLE IV
EXPERIMENTAL RESULTS OF GLOBAL TEST ACCURACY WITH DIFFERENT

PRIVACY BUDGETS FOR DIFFERENT TRAINING ALGORITHMS

Privacy
Budget

Method
(DP-)

Dataset
MNIST CIFAR-10 CIFAR-100
Average

Accuracy
Average

Accuracy
Average

Accuracy

0.1

FedAvg 88.34% 34.49% 10.36%
cpSGD 85.53% 31.92% 8.92%

FedSNLC 90.74% 39.82% 13.94%
FedAGS 91.16% 40.96% 14.34%

0.2

FedAvg 91.68% 42.88% 16.17%
cpSGD 89.15% 39.51% 14.89%

FedSNLC 92.92% 46.53% 18.91%
FedAGS 93.24% 46.86% 19.44%

0.5

FedAvg 93.87% 48.36% 20.21%
cpSGD 90.63% 45.94% 18.31%

FedSNLC 94.28% 51.94% 22.15%
FedAGS 94.75% 51.37% 22.63%

budget is set to 0.1, DP-FedAGS achieves a global test accu-
racy improvement of approximately 2.82% compared to DP-
FedAvg. When the privacy budget is set to 0.5, DP-FedAGS
achieves a global test accuracy improvement of approximately
0.88% compared to DP-FedAvg. Similarly, during CIFAR-10
and CIFAR-100 training, when the privacy budget is set to
0.1, DP-FedAGS exhibits a larger improvement in global test
accuracy compared to DP-FedAvg, and the improvement is
higher than when the privacy budget is set to 0.5. Therefore,
DP-FedAGS can enhance the availability of global training
models with low privacy budgets. The MNIST dataset is
relative simple, which leads to minimal differences in accuracy
among the four model training methods. However, on the
moderately complex CIFAR-10 dataset, DP-FedAGS exhibits
a substantial enhancement in global test accuracy, outperform-
ing both DP-FedAvg and cpSGD. For complex datasets, DP-
FedAGS selectively applies noise perturbation to important
gradients during each training round and dynamically cal-
culates the gradient aggregation weights. Consequently, DP-
FedAGS can more precisely regulate the gradient perturbation
in each round, particularly in complex datasets.

D. Simulation Summary

In summary, DP-FedAGS outperforms DP-FedSNLC in
terms of privacy protection while remaining comparable to

DP-FedAvg and cpSGD. For the relatively low-complexity
dataset MNIST, there is minimal disparity in the global test
accuracy between DP-FedAGS and the three baseline methods.
However, when training with CIFAR-10 and CIFAR-100, DP-
FedAGS exhibits superior performance in global test accuracy
with low privacy budgets when compared to the three baseline
methods. Therefore, when training with low privacy budgets,
DP-FedAGS effectively addresses the trade-off between pri-
vacy protection and model accuracy.

VI. CONCLUSIONS

In this paper, we tackle the trade-off between privacy
protection and model accuracy with low privacy budgets
by proposing a novel approach DP-FedAGS, which protects
only the significant gradients and prevents excessive noise
addition, while accelerating the convergence of the global
model. Experiments on MNIST, CIFAR-10, and CIFAR-100
manifest that our approach can more effectively perturb the
significant gradients during each training round and dynam-
ically calculate gradient aggregation weights based on the
clients’ local training. DP-FedAGS considerably enhances the
accuracy and availability of model training while ensuring
privacy protection, thereby effectively tackling the trade-off
between privacy protection and model accuracy.
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Fig. 3. The trend of changes in global test accuracy with different training methods and privacy budgets. As shown in (a), during MNIST training, DP-
FedAGS achieves higher average global test accuracy than DP-FedAvg, cpSGD, and DP-FedSNLC, with improvements of approximately 1.75%, 4.61%, and
0.40% respectively. In (b), during CIFAR-10 training, DP-FedAGS outperforms DP-FedAvg, cpSGD, and DP-FedSNLC, with improvements of approximately
4.49%, 7.27%, and 0.30% respectively. In (c), during CIFAR-100 training, DP-FedAGS achieves higher global test accuracy than DP-FedAvg, cpSGD, and
DP-FedSNLC, with improvements of approximately 3.22%, 5.55%, and 0.39% respectively.
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